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Abstract. The quantum mechanical correspondence of the Kepler problem in R3 and the free-
particle motion on spaces S3 and S3

1 is found by using the fact that the Higgs algebra is a finite
W -algebra obtained by embedding of algebra sl(2) into sl(4).

1. Introduction

The Kepler problem in flat spaces has been intensively studied from the symmetry point of
view. The correspondence between this problem in Rn and free motion on the sphere Sn

had been established in [1–3] on both classical and quantum levels. At the same time the
symmetry properties of the Kepler problem in the spaces of constant curvature have been
studied considerably less. In this paper we consider the quantum mechanical correspondence
between the Kepler problem inR3 and free motion on the sphere S3 on the basis of the relations
between symmetry algebras of both problems.

The symmetry algebra of the quantum mechanical Kepler problem on spaces of constant
curvature has been studied in [4, 5] (for arbitrary dimensions) and independently in [6, 7]
(for spaces S3 and S3

1 ). In spaces S3 and S3
1 the operators of angular momentum Li =

−iεijkξj ∂/∂ξk , (i, j, k = 1, 2, 3) and operators of Runge–Lentz vector R = (1/2ρ){L×N −
N × L} + µξ/|ξ | (where N = −i(ξ4∂/∂ξ − ξ∂/∂ξ4)) commute with the Hamiltonian on
the sphere K = −(1/4ρ2)MαβMαβ − (µ/ρ)ξ4/|ξ | (ξ = {ξ1, ξ2, ξ3}, ξ 2 + ξ 2

4 = ρ2), where
Mαβ = (εijkLk, εijkNk) are generators of the geometrical SO(4) group on a sphere. The
operators Ri and Li satisfy the following commutational relations:

[Li, Lj ] = iεijkLk [Li, Rj ] = iεijkRk [Ri, Rj ] = −2i

(
H − L2

ρ2

)
εijkLk. (1)

Moreover, RL = LR = 0 and R2 = 2H(L2 + 1)− 1/ρ2L2(L2 + 2) +µ2. For spaces S3
1 one

needs a substitution: ρ → ir , (r > 0) and ξ4 → iξ0. It was pointed out in [9] that it is a finiteW -
algebra obtained by embedding sl(2) → sl(4). Finite W -algebras have been introduced [8,9]
by considering symplectic reductions of finite-dimensional simple Lie algebras in complete
analogy with usual (infinite-dimensional) W -algebras constructed as reductions of affine Lie
algebras.

Based on the property of finite W -algebras to appear as a commutant of a particular
subalgebra in a simple Lie algebra G in [11, 12] a new class of G representations has been
constructed with the use of finite W -algebra associated with the above-mentioned embedding.
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In this paper we proceed in a somewhat opposite manner: starting from the particular
representation of G (we consider the sl(4) case only) as a dynamical symmetry algebra of the
Kepler problem in R3 we construct a finite W -algebra in terms of this representation. Then
one can associate the W generators expressed in terms of this particular representation as a
Runge–Lentz vector of some problem on a sphere (section 3). Within our purely algebraic
approach the natural way to express the sphere coordinates through coordinates (x,p) of
the Kepler problem is to consider some orbits in coadjoint representation of SO(4, 2). The
explicit expressions of these coordinates (see section 4) are given by some limitations of the
corresponding moment map. Therefore, one can find the correspondence between the problem
defined in flat space (and possessing an algebra of symmetry so(4, 2)) and the problem defined
on a space of constant curvature.

Some information concerning the technique of sl(2) embedding is given in section 2 (for
more details see [8–12]).

Throughout the paper we will use following notations for the Hamiltonians: K is the
Hamiltonian of free motion on the sphere S3 and H is the Hamiltonian of the Kepler problem
in R3.

2. General construction of sl(2) embedding

Let G be a real, connected, noncompact Lie algebra. Let {ta} be the basis of G, and J a the
basis in dual space G∗:

[ta, tb] = f c
abtc J a(tb) = δab . (2)

Here the metric on G in a representation R is

ηab = 〈ta, tb〉 = trR(tatb) ηabη
bc = δca. (3)

One can define on G∗ a Poisson–Kirillov structure which mimics the commutators (2):

{J a, J b} = f ab
c J c f ab

c = ηadηbeηcgf
g

de. (4)

As usual, we introduce a gradation on G = G− ⊕G0 ⊕G+ relative to an sl(2.R) embedding
into algebra G [9]. Let t0, t+, t− form an sl(2) subalgebra of G ([t0, t±] = ±2t±, [t+, t−] = t0).
Then, its Cartan generator t0 defines the gradation:

G = ⊕m
p=−mGp [t0, X] = pX ∀X ∈ Gp (5)

where [Gp,Gq] ⊂ Gp+q and p are integers here.
In the usual Hamiltonian approach [9] we impose a first class constraint on the G+ part

of the J matrices. These constraints generate a gauge invariance. Therefore, one can find
gauge-independent quantities. In general, this set will be generated by some finite subset. The
Poisson brackets between them form a finite W -algebra.

We introduce on G∗ first class constraints relative to the G∗
+ part of the J -matrix:

J i − χi = 0 ∀i|ti ∈ G+ (6)

where χi is a constant, which is zero except when J i = J + , a positive sl(2) root generator.
For simplicity χ+ = 1. The constraints weakly commute among themselves and generate a
gauge invariance on the J a:

J a → exp(ci{J i, .}Const)(J
a) = J a + ci{J i, J a}Const + 1

2cicj {J j , {J i, J a}}Const + · · · (7)

where J i ∈ G∗
+ and ci are the gauge transformation parameters.

Let us introduce the constrained matrix J = t+ + J βtβ + J β̄ tβ̄ (J β ∈ G∗
0 and J β̄ ∈ G∗

−) and
look at the gauge transformation (7): J → J g = exp(ci{J i, .}Const)(J ). Developing J g with
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the help of the gradation we can rewrite J g as J g = g−1Jg, where g = exp(cβ̄ tβ̄ ) ∈ G−. One
fixes the gauge by demanding the transformed current J g to be of the form

J g = t+ + Wsls [t−, ls] = 0 [t0, ls] = sls . (8)

W -generators are in the enveloping algebra of G∗ and are gauge invariant.

3. The Kepler problem in R3 and free motion on the sphere S3

It is well known that a Kepler problem in R3 with Hamiltonian H = p2/2m − α/r (where
r = (xx)1/2, x = (x1, x2, x3)) has the SO(4, 2) group of dynamical symmetry (see [13, 14]).

Now we can take a particular realization of SO(4, 2), namely the algebra of dynamical
symmetry of the Kepler problem, in order to construct a new realization of a finite W -algebra
related to embedding into sl(4). Both algebras sl(4) and so(4, 2) are noncompact versions of
so(6) and therefore could be connected through a compactification process.

The vector of angular momentum J together with Runge–Lentz vector A forms the so(4)
compact subalgebra. The classical expressions for generators of the full algebra are

J = x × p

A = 1√−2mH

(
p × J − αx

r

)

M = rp cos δ +
1√−2mH

(
(xp)p − mαx

r

)
sin δ

Γ = −rp sin δ +
1√−2mH

(
(xp)p − mαx

r

)
cos δ

10 = mα√−2mH

T = 1√−2mH
(rp2 − mα) cos δ − (xp) sin δ

14 = − 1√−2mH
(rp2 − mα) sin δ − (xp) cos δ

(9)

where δ = −(xp)/10. Note also that JA = 0 and A2 = −J2 − α2/2mH . Thus the second
Casimir operator of SO(4) is C2 = J2 + A2 = −α2/2H .

According to the general procedure described in section 2 we identify these quantities with
the coordinates of points in so(4, 2)∗. For embedding sl(2) → sl(4) we choose the following
basis in sl(4):

J ata =




1
2J10 + Jj3 + JA3 Jj1+ij2 + JA1+iA2 J14−iT + J13−iM3 J11−iM1+12−iM2

Jj1−ij2 + JA1−iA2
1
2J10 − Jj3 − JA3 J11−iM1−(12−iM2) J14−iT − J13−iM3

J14+iT + J13+iM3 J11+iM1+12+iM2 − 1
2J10 + Jj3 − JA3 Jj1+ij2 − JA1+iA2

J11+iM1−(12+iM2) J14+iT − J13+iM3 Jj1−ij2 − JA1−iA2 − 1
2J10 − Jj3 + JA3



.

Here the quantities J10 , Jj1 etc denote the elements in the space so(4, 2)∗ which corresponds
to the elements of so(4, 2) in the sense of metric (2). The sl(2) subalgebra we consider is
t0 = t10 , t+ = t14+iT , t− = t14−iT . The corresponding grading of sl(4) = G−1 ⊕ G0 ⊕ G1 is the
following:

G−1 = {14 − iT , 1k − iMk}
G0 = {Ji , 10,Ak}
G1 = {14 + iT , 1k + iMk}.

(10)

The one-dimensional representation is defined as χ(t+) = 1, χi(t1k+iMk
) = 0. The constraints

therefore read J + − 1 = 0, J 1k+iMk = 0.
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One has to find gauge independent quantities as functions of variables Jk, 10, Ak . The
corresponding group element G+ is


1 0 0 0
0 1 0 0

a + b c 1 0
d a − b 0 1


 (11)

where parameters a, b, c, d are functions of currents. After calculations one obtains the
following expressions for W -generators:

R̃1 = 11 + iM1 + 210A1 + 2(J2A3 − A2J3)

R̃2 = 12 + iM2 + 210A2 + 2(A3J1 − J3A1)

R̃3 = 13 + iM3 + 210A3 + 2(J1A2 − A1J2)

C ′ = 14 − iT + J3 + 12
0 + A2 + J2

Li = Ji.

These generators form the Higgs algebra (1). Now we perform the classical Miura
transformation defined as follows (for more details see [9]); note that the W generators could
be presented in the following way:

R̃a = Ra
− + R̃a

0 (12)

where the Ra
− part contains generators from G− only, and the R̃a

0 part is constructed from
so(4, 2) generators which belong to G0. Therefore, one can define the embedding of a finite
W -algebra expressed in terms of G− ⊕ G0 into Kirillov–Poisson algebra K0 of subalgebra G0:

W −→ K0(G0). (13)

This means that the algebra generated by R̃a is isomorphic to the algebra generated by Ra
0 .

Moreover one can note that it is isomorphic to the algebra with W generators constructed
from the sl(2)⊕ sl(2) subalgebra of G0. Therefore, we obtain that the generators (a = 1, 2, 3)

Ra = i(J × A)a Ja (14)

do form the Higgs algebra under Poisson brackets:

{Ra,Rb} = −i(C2 − 2J 2)εabcJc

{Ja, Rb} = iεabcRc {Ja, Jb} = iεabcJc

where C2 = J 2 + A2 is the second Casimir operator of o(4).

4. The explicit construction of a sphere

Now we consider the vector R as a Runge–Lentz vector of the classical problem on some
sphere. The operator C2 (Poisson) commutes with all Ris and therefore one can interpret
C2/2 as a Hamiltonian of a new problem on the sphere (see (1)). The vectors J,R satisfy
all additional conditions on vectors of the Kepler problem in space S3 (see section 1). The
classical expressions are

R · J = 0 R2 = J2A2 = −J4 + 2KJ2 (15)

from which it follows that the charge µ = 0. Therefore, for the classical Hamiltonian of a free
particle on a sphere we have 2K = −α2/(2H).
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The quantum counterparts of the above expressions are

Ra = i

2
(J × A − A × J)a Ja

[Ri, Rj ] = −iεijk(C2 − 2J2)Jk [Ji, Rj ] = iεijkRk [Ji, Jj ] = iεijkJk
JR = RJ = 0 R2 = C2J

2 − J2(J2 + 2)

(16)

where C2 is the quantum counterpart of the second Casimir operator. Note that the expression
for operator A is valid for H = En = −α2/(2(J2 + A2 + 1)) < 0. Taking into account the
quantum expression for A2 = −(J2 + 1) − α2/(2H) we obtain the spectrum of the problem
on a sphere:

2K = C2 = − α2

2H
− 1. (17)

The irreducible representations of SO(4) are defined by two numbers: j1 and j2 (ji ∈ Z+/2).
For the representation realized in the Kepler problem j1 = j2 = j and C2 = 4j (j + 1).
From the other side j = (n − 1)/2, where n is a hydrogen quantum number. Therefore, we
obtain the spectrum of free-particle motion on a unit sphere: εn = C2/2 = (n2 − 1)/2, where
n = 1, 2, 3, . . . is a quantum number of the hydrogen atom in R3.

In order to consider the case H > 0 we note that vectors J,A satisfy relations of the
Lorentz group and thus we will have a ‘plus’ sign in the nonlinear term of the commutation
relations for Ri and C2 = J 2 −A2. Therefore, the case H > 0 corresponds to the motion of a
particle on the unit hyperboloid S3

1 . For the motion of a particle in the space S3
1 in a Coulomb

potential there are both discrete and continuous parts of the spectrum, but because µ = 0 in
our case only the continuous part exists.

In order to identify the sphere on which this motion takes place we have to obtain
the expressions for J,A in a form similar to the form of generators of SO(4) on a unit
sphere. Therefore, in some coordinates ξα generators J,A have to be presented as follows:
Mα,β = −i(ξα∂β − ξβ∂α) (see section 1).

In order to obtain such a representation of so(4) (and therefore the reps of so(4, 2)) it is
natural to use the method of orbits.

Note that the stability subgroup of the point ωl = l1∗
0 ∈ so(4, 2)∗ is given by the

maximal compact subgroup SO(2)⊗SO(4). Therefore, the orbit Oωl
through this point is the

homogeneous symplectic manifold SO(4, 2)/SO(2)⊗SO(4). One special parametrization of
this coset space is to consider it as a bounded subdomain of type IV inC4 (see, for example, [16])
that obeys the conditions

ξαξ̄α < 1 1 − 2ξαξ̄α + |ξαξα|2 > 0 (18)

where ξα(α = 1 . . . 4) (ξαξα = ξ 2
1 + · · · + ξ 2

4 ) are complex coordinates in the domain. In this
parametrization the coset space possesses a standard Kähler potential K = − log(1 − 2ξαξ̄α +
|ξαξα|2). The moment map Oωl

→ C4 is defined as follows:

ξα = i

210

(
σα +

σασα

210(10 + l) − σασ̄α
σ̄α

)
(19)

where σα = Mα − i1α , 1α = (Γ, 14) and Mα = (M , T ). The action of SO(4, 2) on this
domain is given by holomorphic transformations. In [17] the following representation of
algebra so(4, 2) has been obtained by holomorphic induction from character exp[i(l + 1)1∗

0 ]:

M̂αβ = −i(ξα∂β − ξβ∂α) Γ̂0 = (l + 1) + ξα∂α

Γ̂α = −(l + 1)ξα −
(
ξαξβ +

1 − ξαξα

2
δαβ

)
∂β

M̂α = i(l + 1)ξα + i

(
ξαξβ − 1 + ξαξα

2
δαβ

)
∂β.
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For l = 0 and real ξα this representation is identical with that obtained in [18]. The limit l → 0
and σασα = 0 which is realized in the Kepler problem is well defined [17]. Therefore, taking
real and imaginary parts of vector ξα we obtain the coordinates of the spheres (in coordinate
and momentum spaces respectively) under investigation (δ = 0 here):(

x

r
− (xp)

mα
p,

√−2mH
(xp)

mα

) (√−2mH
rp

mα
,
rp2

mα
− 1

)
. (20)

Thus the free-particle motion on these spaces corresponds to the Kepler motion of a particle in
R3. These coordinates are orthogonal to each other because Mµ1µ = 0. Note that the second
coordinate system has been found by Fock [19].

The coordinates for the space S3
1 can be obtained by the substitution ξ4 → iξ4.

In these coordinates the wavefunction of the Kepler motion in R3 for H < 0 is the same
as for the free motion on a sphere and the wavefunction for the continuous Kepler spectrum
coincides with the wavefunction of free motion on S3

1 .

5. Conclusion

It is necessary to note the following items:

(1) The group of the dynamical symmetry of the Kepler problem in RD−1 is SO(D, 2). The
generators of the Higgs algebra can be constructed in the same way as for D = 3 and
therefore the approach offered here can be generalized on any D.

(2) The method of construction of the representations of the Higgs algebra starting from a
realization of so(4, 2) as the algebra of group of dynamical symmetry can be applied to
another physical system, namely a free massless relativistic particle in four-dimensional
space–time.

(3) The construction allows a generalization for the case when there is a gauge connection
on sphere SD−1 induced by embedding of this sphere into RD according to the approach
of [20].

(4) The expressions for SO(4, 2) generators can be replaced by those given by Barut and
Bornzin in [15]. Their realization gives quantum expressions for SO(4, 2) generators.
The expressions for sphere coordinates will be different from those given here.
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